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The free energy of solvation of a polypeptide or a protein can be expressed in terms of the 
accessible surface area of the molecule. Algorithms for energy minimization or for molecular 
dynamics, which involve the first derivatives of the energy, including the free energy of solva- 
tion, are commonly used in the conformational analysis of proteins. Discontinuities of the first 
derivatives, which occur in the accessible surface area and, hence, in the solvation energy, can 
cause serious numerical problems. In this paper, we describe all the situations in which the gra- 
dient of the molecular surface area becomes discontinuous. 

0. I n t r o d u c t i o n  

The computa t ion  of  accessible surface area [1 ] and its first derivatives is becom- 
ing more  and more  important  in the analysis of  polypeptide and protein conforma-  
tions. Partly, this is due to increasing reliance on space-f'ffling graphical 
representations by molecular  models; partly, it is a consequence of  the search for 
reasonably simple approaches to the problem of  computing solvation free energies 
of  peptides. One such simple approach associates a free energy density with each 
a tom and calculates the contr ibution of  that  a tom to the solvation free energy as 
the product  of  the free energy density and the accessible surface area; the total  sol- 
vat ion free energy is then the sum of  the contributions f rom all a toms exposed to 
the solvent [2,3]. 

The most  popular,  and computat ional ly most  efficient methods  for comput ing 
accessible surface areas analytically are those of  Connolly [4] and Richmond  [5], 
which treat  the atoms as spheres and use the Gauss-Bonnet  theorem from differen- 
tial geometry  to calculate the exposed area of  each atom. Both Connolly 's  and 
Richmond ' s  methods  have been modified by subsequent workers [6-9], and two 
recent algorithms based on these equations show promise of  being fast enough for 
routine use in computat ions of  the conformational  energy of  solvated polypeptides 
and proteins [7,9]. Both of  these algorithms also compute  the first derivatives of  
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the solvation free energy with respect to the coordinate vectors of the constituent 
atoms of the peptides. With the availability of these algorithms, the possibility of 
carrying out energy minimization or molecular dynamics of solvated proteins and 
other macromolecules, without consuming excessive amounts of CPU time, 
becomes a reality. 

However, there is a difficulty associated with the use of these algorithms. 
Although the accessible surface area S (i.e. the area of those parts of the surface 
that are not contained inside any of the spheres of the system) is a continuous func- 
tion of the spatial positions of the atoms, its gradient is not. When two atoms touch 
from the outside, there is a discontinuity in the gradient, as follows immediately 
from the expression for the surface areas of two spheres that intersect [9,10]. The 
question arises whether this is the only situation that leads to a discontinuity in the 
gradient. The answer to this question is important practically as well as theoreti- 
cally, because gradient discontinuities frequently cause problems during searches 
for local energy minima, and also lead to instability of dynamical trajectories. In 
this paper, we show that one other spatial arrangement of atoms gives rise to a dis- 
continuity in the gradient, and that these two are the only situations associated 
with discontinuities. 

An additional difficulty arises if a given algorithm computes only that part, So, 
of the total surface area S, which is not buried inside the molecule (a portion of the 
surface is said to be buried inside the molecule, if there is no way to connect points 
belonging to this portion with points lying outside the molecule by a continuous 
curve, without entering the interior of at least one atom). An example of this type of 
algorithm is the MSEED algorithm [7]. Then, the function So itself, as well as its 
gradient, may be discontinuous. We show, however, that discontinuities of the gra- 
dient of So are associated with the same situations as in the case of S, unless the 
function So is itself discontinuous. 

In section 1, we present the main theorem of the paper, and we outline its 
proof. 

In section 2, we define the notion of a circle of intersection of two spheres in 
space, and we prove that its radius, the position of its center, and the orientation of 
its plane, are C °o [11,12] functions of the centers of the spheres. We also show 
that, under certain assumptions, the orthogonal projection of the circle on a plane 
is an ellipse, and its center, the lengths of its axes, and its orientation on the plane, 
are Coo functions of the intersecting spheres. 

In section 3, we define Coo families of ellipses, and full ellipses (an ellipse plus 
its interior), so that the projection of a circle of intersection of two spheres, which 
moves with a change of the positions of their centers, constitutes a C °O family of 
ellipses on the plane of the projection. We prove that the positions of certain points, 
belonging to ellipses from Coo families, are C °~ functions of all parameters defining 
these ellipses, i.e. the coordinates of their centers, the lengths of their axes, and 
their orientations on the plane. We show among other things that the position of 
the point of intersection of ellipses belonging to two Coo families is a Coo function of 
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these parameters,  unless the ellipses are tangent to each other. We also introduce 
the definitions of  external and internal tangency of  ellipses, and show some of  their 
properties. 

Section 4 is devoted to C °o families of full ellipses. This is the key section of  the 
paper. The two lemmas in this section give estimates of the areas of certain sets in a 
plane that are bounded by arcs of ellipses belonging to Coo families. To prove these 
lemmas, we apply the results from section 3. The second lemma contains an addi- 
tional assumption about curvatures of ellipses, which are not satisfied in general by 
Coo families of  ellipses; however, in section 5, we show that, for our purposes, this 
additional assumption is acceptable. 

Section 6 presents the main results. Continuity of the gradient of  the surface 
area of  the geometrical model of  a molecule is shown to be equivalent to a set of 
simple geometrical relations between the radii and the centers of the spheres consti- 
tuting the model. The surface area is represented by a linear combination of inte- 
grals of functions defining portions of the surface, over sets in a plane that are 
bounded by arcs of ellipses belonging to Coo families; the results of section 4 are 
applied in section 6. 

1. M a i n  t h e o r e m  a n d  a n  out l ine  o f  its p r o o f  

As we prove in this paper, the gradient of  the accessible surface area S (defined 
in the introduction), as a function of the Cartesian coordinates of the centers of all 
spheres modelling the molecule, is discontinuous for those and only for those coor- 
dinates for which one of  the following situations arises: 

(a) two spheres are identical, 

(b) two spheres are externally tangent, 

(c) there exist three spheres intersecting each other along the same circle of inter- 
section, 

and, in addition, both spheres in case (a), or the point of tangency in case (b), or 
the common  circle of intersection in case (c), are not totally contained within the 
domain bounded by the remaining spheres of the system. 

The accessible surface area S can be represented as a sum of surface areas of 
regions of spheres that are bounded by arcs of  circles of intersection. To calculate 
the surface areas of  those regions, we consider their orthogonal projections on sui- 
tably oriented planes; the surface areas are computed as integrals of a certain posi- 
tive, Coo function h, over the images of those regions under the projection. The 
problem of  discontinuities of  the gradient of S transforms into a problem of discon- 
tinuities of the gradients of areas of planar sets bounded by arcs of ellipses. 

We investigate all possible kinds of intersections, and all possible types of  
tangencies of  ellipses on a plane, as well as their influence on the continuity of  the 
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gradient of the areas bounded by arcs of ellipses. We conclude that a discontinuity 
of this gradient can arise only if there exists an arc common to two ellipses, or if a 
new ellipse is created. Since arcs of ellipses on the plane are orthogonal projections 
of  arcs of  circles of intersection in space, these situations correspond to the arrange- 
ments of spheres listed in the theorem as (a), (b), and (c). 

2. M o v e m e n t s  o f  spheres in R 3 space 

D E F I N I T I O N  2.1 

If  u = (x, y, z) e R 3 and R > 0 then O(u, R) denotes the sphere O in R 3 with center 
u and radius R, i.e. the set of all points in R 3 which are at a distance R from the 
point  u. 

D E F I N I T I O N  2.2 

If  01(ul,R1) and 02(u2~R2)  a r e  two spheres in R 3 then the set of  all points 
belonging to both O1 and 02, is called a circle of intersection of these two spheres. 

D E F I N I T I O N  2.3 

Two spheres 01(ul, R1) and O2(u2, R2) are externally tangent if l u l -  u21 
= R1 + R2. Two different spheres O1 (ul, R1) and 02 (u2, R2) are internally tangent 
if lUl - u21 = IR1 --  R21- 

R E M A R K  2.1 

If  Ul = u2 and R1 = R2, then O1 = 02 and any large circle of  the spheres is called 
a circle of intersection. In the case when O1 and 02 are tangent (externally or intern- 
ally) the circle of intersection is reduced to a single point. If, however, there are no 
common  points of  the spheres O1 and 02, we do not define the circle of intersec- 
tion. This means that, whenever we consider a circle of intersection, we always 
assume that  the circle is not empty. 

L E M M A  2.1 

Let O1 (Ul, R1) and 02(u2, R2) be two spheres in R 3. The position u0 of  the center 
of  the circle of intersection is a Coo function of ul and u2. 

Proof 
If  R1 ¢ R2, then the position u0 of the center of the circle of intersection is given 

by the equation: 

( u ,  + - - 
(1) 

/dO = 2 lUl --  U21"mIu 1 --  U21 " 

This equation describes a C °o function of Ul and u2 everywhere with the exception 
of the situation, in which ul = u2, i.e. outside the domain where the circle if intersec- 
tion is defined. 
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If R1 = R2, then the position of u0 is given by 

(ul + u2) 
U 0 = 

2 

which is a C °O function of ul and u2 everywhere. 

(2) 

[] 

LEMMA 2.2 
Let O1 (ux, R1) and O2(U2~ R2) be two spheres in R 3. The radius R0 of the circle 

of intersection is a Coo function oful and u2 unless 

lu, - u21 = IR1 + R2I, (3) 

i.e. when the spheres 01 and 02 are externally or internally tangent. 

P r o o f  

If R1 ¢ R2, then the radius Ro of the circle of intersection is given by the 
equation 

R o = ~ / R 2 _ [ ( R 1 - R 2 ) ( R I + R 2 )  {Ul -- U2'] 2 
i -ud , (4) 

which describes a C °o function of Ul and u2 everywhere where the circle of intersec- 
tion if defined, unless the expression under the square root is zero. This happens, 
however, if and only if [ul - u21 = {R1 + RE[ and is excluded by the assumption in 
eq. (3) of the lemma. 

If R1 = RE, then the radius R0 is given by 
! 

{Ul U212 
Ro = 2 + 4 ' (5) 

which is a Coo function Of Ul and u2 everywhere. [] 

LEMMA 2.3 
Let O1 (ul, R1 ) and O2 (u2, R2) be two different, non-tangent (externally or intern- 

ally) spheres in R 3. The plane O defined by the circle of intersection can be 
expressed by the equation 

A x  + B y  + C z  + D = O (6) 

with the coefficients A, B, C and D given by the following equations: 

A = x2 - x l  ~ 

B =Y2 --Yl , 

C = z2 - z l  , 
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D = -[(x2 - Xl)X0 + (Y2 - yl)y0 + (z2 - Zl)Z0], (7) 

where x0,y0, z0 are the coordinates of  the center of  the circle of  intersection. The 
coefficients A, B, C, D are C °O functions oful  and u2. 

Proof  
The plane O is obviously perpendicular to the vector [x2 - Xl, y2 - - Y l ,  z2 - -  Zl] 

(the assumptions of  the lemma imply that  it is a non-zero vector), and the center of  
the circle of  intersection lies in this plane. This justifies eqs. (6) and (7). The fact 
that  the coefficients are Coo functions of  Ul and u2 follows from eq. (7) and f rom 
lemma 2.1. [] 

L E M M A  2.4 

Let spheres O1, 02, and the plane O be defined as in lemma 2.3. In addition, 
assume that  O is not  parallel or perpendicular to the plane xy, and that  the line of  
intersection of  the planes O and xy  is not  parallel to either the x or the y axis. The 
or thogonal  projection of  the circle of  intersection on the xy-plane is an ellipse and 

- t h e  coordinates of  its center, 

- the lengths of  its major  and minor  axes, 

- the angles between these axes and the x- and y-axis 

are C ~° functions of  ul and u2. This means that this ellipse can be parametr ized as 
follows: 

x(co) = a cos a cos co - b sin a sin co + x0, 

y(co) = a sin a cos co + b cos a sin w + Y0, (8) 

where a, b are the lengths of  the major  and minor semi-axes, respectively, a is the 
angle of  orientat ion between the major  axis of  the ellipse and the x-axis, x0, Y0 are 
the coordinates of  the center of  the ellipse, and co is a parameter  to specify a point  on 
the ellipse; a, b, a ,  x0, y0 are Coo functions of  ul and u2. 

The curvature of  the ellipse at the point corresponding to a given value of  the 
parameter  co [according to the parametr izat ion in eqs. (8)] is a Coo function ofu l ,  u2 
andco. 

Proof  
Lemma 2.1 implies that  the coordinates x0, Y0, z0 of  the center of  the circle of  

intersection are C °~ functions of  ul and u2. Since the coordinates of  the center of  the 
ellipse on the xy-plane are obviously (xo,Yo), they are Coo functions of  Ul, u2 as 
well. 

The length a of  the major  semi-axis of  the ellipse equals the radius R0 of  the circle 
of  intersection, which is a Coo function of  ul and u2, as follows f rom L e m m a  2.2. 
The length b of  the minor  semi-axis is given by the equation 
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b =  R0 ICI 
x/A2 q- B2 q- C2 (9) 

with A, B, C being C °o functions of ul, u2, defined by eqs. (7). Since the plane O is 
not parallel to the xy-plane, at least one of the coefficients A, B is different from 
zero; hence, the expression under the square root in eq. (9) is always positive. Since 
O is not perpendicular to x y ,  the value of C is either always positive or always nega- 
tive. Hence, b is a C °o function oful and u2. 

The angle between the x-axis and the major axis of the ellipse is equal to the 
angle between the x-axis and the line of intersection of the planes O and x y ,  given by 
the equation A x  + B y  + D = 0. The cosine of this angle equals I B I / x / A  2 + B 2. 

Since this line of intersection is not parallel or perpendicular to the x-axis, the 
expression under the square root is always positive, and the value of B is either 
always positive or always negative. Hence, the cosine of this angle, and the angle 
itself, are C °O functions of ul, u2. 

The curvature of the ellipse at a point related to a given value of the parameter 
03 equals [5c(03)j~(03) - Yc(03)p(03)]/[Yc(03) 2 + j)(03)213/2 = a b / ( a  2 COS2 03 q.. b 2 sin 2 03)3/2, 
where x and y are given by eqs. (8), and 5c, p and 3~, j~ denote the first and second deri- 
vatives, respectively, o fx  and y with respect to the parameter w. It is a Coo function 
of Ul, u2 and 03 because a and b are such functions, and they are always positive. [] 

REMARK 2.2 
Lemma 2.4 remains true if we replace the plane x y  by a plane ~P, not parallel or 

perpendicular to O, and supply it with a Cartesian coordinate system V~, such that 
the line of intersection of the planes (P and O is not parallel or perpendicular to 
any of the axes V and ~. The parametrization in eqs. (8) will then take the form 

V(W) = a cos a cos 03 - b sin a sin 03 + Vo, 

~(03) = a s i n a c o s 0 3  + b c o s a s i n 0 3  + ~o, (10) 

where a, b are the lengths of the major and minor semi-axes of the ellipse, respec- 
tively, a is the angle of orientation between the major axis and the v-axis, and V0, ~0 
are the coordinates of the center of the ellipse on the plane ~P in the V~ coordinate 
system. 

3. Movemen t s  of  ellipses on  a plane 

Let us assume that Oa (ul ,  R1),..., On (Un, Rn) is a collection of n spheres in R 3. 
Furthermore, we assume that the radii R1 , . . . ,  Rn are fixed and u = ( u l , . . . ,  u,,) 
= (xl, Yx, z l , . . . ,  x,, Yn, zn) is a collection of independent variables. 

With each pair i , j  of spheres, and with each plane ~P with a Cartesian coordinate 
system V(, we can associate an ellipse on the plane ~P for every value of (Ul , . . . ,  
ui, . . . , u i , . . . ,  u,,) = u, provided that, for these values of ui, uj, certain conditions 
are satisfied (see the assumptions in remark 2.2). This ellipse is defined by eqs. (10), 
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and a, b, a ,  ri0, (0 are Coo functions of ui and uj. We can obviously say tha t  a, b, 
a ,  ri0 and (0 are also C ~ functions of  all variables uk, k --- 1 , 2 , . . . ,  n, since these 
funct ions do not  depend  at all on any quanti t ies other  than  ui and  uj. In  other  
words,  if the assumpt ions  in remark  2.2 are satisfied for the pair  i , j  and for a given 
po in t  u = (ux , . . . ,  un) e R  3n, then there exists an open ne ighborhood  [13] U c R 3n 
of  this po in t  such that ,  for every point  u belonging to U, the associated ellipse E ~ is 
given by the parametr iza t ion  of eqs. (10), and  a, b, a,  ri0, (0 are Coo funct ions  of  
u E U ~ R 3n. 

We int roduce the following definition: 

DEFINITION 3.1 

Let U be an open set [13] in an N-dimens ional  space W v (in our  case N will 
always be equal to 3n), and for every u ~ U let E u be an ellipse on a plane • supplied 
with a Car tes ian coordinate  system ri~. I f  the family {E" : u e U} can be parame-  
trized by eqs. (10) with a, b, a, rio, ~o being C °o functions of  u ~ U, then it is called a 
C °O family of  ellipses. 

I f  E is an ellipse on a plane (P, b2 denotes the set of all points  on this plane which 
are inside the ellipse E, including the ellipse itself (i.e. the border  of  this domain) ,  
and  is called a fu l l  ellipse. Consequent ly ,  if {E ~ : u e U} is a Coo family of  ellipses, 
{b2 u : u e U} is called a C °O family of  full ellipses. 

LEMMA 3.1 

Let {E u : u e U} be a Coo family of  ellipses on the ri~-plane. Let v be a unit  vector  
on the plane. There is a unique point  on each ellipse E ~, for which the outer  no rma l  
uni t  vector equals v. The  coordinates  (ri, () of  this point  are Coo funct ions ofu .  

P r o o f  
We will first prove the l emma in the case in which this vector equals [1,0]. Then,  

our  point  on the ellipse E u is the point  where the coordinate  77 takes its m a x i m u m  
value. Hence,  its posi t ion can be derived f rom the equat ion  / / (w)=  0, with  

> O: 

- a c o s a s i n w  - b s i n a c o s w  = 0 

and 

- a  sin a sin w + bcos a c o s w > O .  

(11) 

(12) 

Fo r  a # i 9 0  ° and  lying in the first or four th  quadrant ,  eqs. (11) and (12) lead to 
the equa t ion  

w = a r c t an [ ( -b  tan a)/a] (13) 

and,  for a # :t:90 ° and  lying in the second or third quadrant ,  to the equa t ion  

w = a r c t an [ ( -b  tan a ) /a ]  + 180 ° . (14) 

The  derivatives o f  bo th  functions (13), (14) with respect to a can be represented as 
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ab 
- -  1 a 2 cos 2 a q- b 2 sin 2 ot (15) 

which is a Coo funct ion for all a ,  since a , b > 0 .  Hence,  bo th  funct ions (13), (14) 
can be extended [14] uniquely to C °O functions on quadrants  I and  IV, and II and  
III, respectively, now including a = +90 °. Moreover ,  they can be extended to the 
same c o m m o n  funct ion w(a) which is periodic and is a Coo funct ion for all real 
values of  a.  

Now,  the coordinates  (r/, ~) can be calculated f rom the eqs. (10) with w replaced 
by w(a). Since a, b, a ,  r/0, ~0 are Coo functions of  u, and  w is a Coo funct ion of  a,  then  
rl and  ~ are Coo funct ions ofu.  

I f  the unit  vector v is different f rom [1,0], let av denote  the angle of  or ienta t ion 
between v and the r/-axis. By ro ta t ion  of  every ellipse f rom the original family 
{E ~ : u ~ U} by the angle - a v ,  we obtain a new C °o family of  ellipses, {E"  : u ~ U}. 
This new family of  ellipses is parametr ized by eqs. (10), with the angle a replaced 
by a + av, and  the p rob lem of  calculating the posi t ion of  the specified point  on  the 
original ellipses for the vector v is equivalent  to the already-solved prob lem of  cal- 
culat ing this point  on the ro ta ted  ellipses for the vector [1,0]. [] 

LEMMA 3.2 
Let  {E ~ : u e U} be a Coo family of  ellipses on the r/~-plane. Let  i] e U and let 

(~, ~) be a poin t  inside E a. Denote  by l~ the half-line star t ing at the point  (~, ~), with 
the angle of  or ienta t ion q$ with the r/-axis, for all ~b e R. Let  p(u, ~b) denote  the dis- 
tance between (~, ~) and the point  of  intersection of  E" and l~. Then  p is a Coo func- 
t ion of  bo th  variables u and q% for u sufficiently close to t]. 

Proof  
We will first prove the l emma with the assumpt ion  that  (~, ~) = (0, 0). The  point  

of  intersect ion of  E ~ and l~ satisfies the following equat ions  (for each u which is 
sufficiently close to ~): 

a cos a cos w - b sin a sin w + r/0 = p cos q$, 

a sin a cos w + b cos a sin w + ~0 = P sin ~b. (16) 

Ifff  ~ k .  90 °, for k = O, 1 , 2 , . . . ,  these equat ions can be t rans formed  into one equa- 
t ion with u n k n o w n  w: 

a s i n ( a - ~ ) c o s w + b c o s ( a - q $ ) s i n w + ( ~ o C O S ~ b - r l o s i n c b )  = 0 .  (17) 

Wi th  A = a s in(a  - ~b), B = b cos(a  - ~b), C = ~0 cos ~b - 77o sin ~b, we obtain 

A c o s w + B s i n w +  C = 0. (18) 

This equat ion  can be solved to give 
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- B C  4- A x / A  2 + B 2 - C 2 
sin co = A2 + B2 , (19) 

where the sign is to be chosen to make  p positive. Since bo th  the denomina to r  and 
the expression under  the square root  are positive, eq. (19) describes a C °o funct ion 
with respect  to A, B, C. Hence, sinco is a Coo funct ion o f u  and ~b. Therefore,  co is a 
Coo funct ion  of  u and qS. With  the assumpt ion  that  q~ ¢ k-  90 °, for k = 0, 1 , 2 , . . . ,  
eqs. (16) imply the Coo dependence of  p(u, 4) with respect to both  variables. 

Ifq~ = k-  90 ° for some k = 0, 1 , 2 , . . . ,  then the r ight-hand side of  the first or the 
second of  equat ions  (16) is equal to zero and leads to eqs. (18) and (19). Conse-  
quently,  co and p are Coo functions of  the variables u and ~b. 

I f  the point  (~, ~) is different f rom (0,0), we can reduce the p rob lem to the pre- 
vious case by translat ing all the ellipses f rom the family {E" : u E U} by the vector  

O O 

[7, ¢]. [] 

DEFINITION 3.2 
Two different ellipses E1 and E2 on a plane :? are tangent  at a point  e if there 

exists a line l tangent  to bo th  E1 and E2 at e. 
Two ellipses E1 and E2 are ex terna l ly  tangent  at e, if they are tangent  at e and,  

in addit ion,  the c o m m o n  parts  of  E1 and E2, as well as E2 and ~:1 are bo th  the same 
single point  e, in a ne ighborhood  of  this point.  

An  ellipse E1 is internal ly  tangent  to an ellipse E2 at e, if bo th  ellipses are tangent  
at e and, in addit ion,  E1 is conta ined in ~?2 in a ne ighborhood of  this point.  

REMARK 3.1 
Two ellipses E l ,  E2 on a plane can be tangent  at a point  e and, at the same time, 

no t  tangent  externally or internally. The ellipses E and E ' / in fig. 1 are one example  
of  this si tuation.  

Indeed,  let E be an ellipse (but not  a circle) and e be a point  on E different f rom 

E" 

£ 

Fig. 1. 
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those four points where the ellipse is intersected by its major or minor axis (see 
fig. 1). Denote by l the line parallel to the minor axis, which includes the point e and 
by E' the symmetric image of E, with l as the symmetry axis. Rotate the ellipse E ~ 
around the point e so that the resulting ellipse E" is tangent (but not externally tan- 
gent) to E at the point e. The ellipses E1 = E and E2 = E" serve as the example of 
the situation described in this remark. 

LEMMA 3.3 

Let ellipses E 1 and E2 meet the conditions specified in remark 3.1. Then the cur- 
vatures of both ellipses at the point e are equal. 

Proof 
If we supply the plane of both ellipses El,  E2 with a Cartesian coordinate system 

such that the abscissa coincides with the line tangent to both E1 and E2 at the point 
e, and if e is the origin of this coordinate system, then the portions of both curves 
E1 and E2 in a neighborhood of this point can be understood as graphs of two func- 
tions Jq and fz, respectively. Both functions together with their first derivatives 
take the value 0, if the abscissa equals 0. As is well known, both are analytical func- 
tions (i.e. expandable into a Taylor series) in a neighborhood of zero. Since, in a 
neighborhood of zero, one of the functions, say f l ,  must be greater than f2 for all 
negative values of the abscissa and, at the same time, smaller than f2 for its positive 
values, then the lowest-order coefficients in both Taylor series, which are different 
from each other, must be of odd order equal to 3 or more. Hence, the second deriva- 
tives of both functions fl  and f2 at 0 must be equal. The well-known relation 
between curvatures and second derivatives completes the proof. [] 

LEMMA 3.4 

Let {E~:uEU} and {E~:ueU} be two C °O families of ellipses on the 
r/, ~-plane. For a given h E U, let/~ be the point of intersection of E~ and E~. 
Assume that E~ and E~ are not tangent at/~. Ifp denotes the point of intersection of 
the ellipses E~ and E~, then the coordinates rT, ~ ofp  are C °O functions of u, for u 
sufficiently close to u. 

Proof 
The proof is very similar to that of Lemma 3.2. Parametrizations in eqs. (10) 

are used for both families of ellipses, and equations in coordinates r/, ~ of the pointp 
as unknown are solved. The assumptions of the lemma assure that the resulting r~ 
and ~ are Coo functions ofu. [] 

4. M o v e m e n t s  o f f u U  el l ipses o n  a p lane  

DEFINITION 4.1 
If G is a Lebesgue measurable subset [15] of a plane ~P,/z(G) denotes the area 

of G. 
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DEFINITION 4.2 

I f u  = (ul, u2 , . . . ,  uN) is a point in the space R N, the norm [lull is defined by the 
expression Ilull = + + . . .  + 1/2. For two points u j and u" belonging to 
R N, the norm of the difference u / -  u/' defines the distance between u ~ and u/' in the 
space W v. 

DEFINITION 4.3 

If  A and B are two sets then A + B denotes the union of the sets A - B and 
B -  A , i . e . A  + B = (A - B) U ( B - A ) .  

REMARK 4.1 

Let U be an open set in R N, and let g be a C °~ function of the variable u e U. 
Then, for any point ~ e U there exists a constant c > 0  such that [g(u) - g (h )  l 
<. cllu - ~ II for all u being sufficiently close to h. 

LEMMA 4.1 

Let { E . ~ : u ~ U } , . . . , { F . U : u ~ U }  be C ~ families of full ellipses on the 
77, ~-plane. Let E ~ denote the intersection (i.e. the common part) of  all ~ ;~ , . . . ,  E,,,.- u 
Suppose that, for some point  ~ ~ U, E" is a single point/~. Then there exists a con- 
stant c > 0 such that 
(i) #(£") ~< cllu - ~ II 3/2 for all u sufficiently close to h, 

(ii) #(g" + g a') ~< eli ~' - ~ II  /211u - ~' II for all u and ~' sufficiently close to ~. 

P r o o f  
The point fi is obviously the intersection of only those full ellipses from 

o 

E ~ ,  . . . ,  E m-~3 whose boundaries contampo , "  o as well. For  simplicity, we may  assume in 
the proof  thatfi  belongs to all ellipses E ~ , . . . ,  E~m . 

The number  #(Eu) is smaller than the area of  the intersection of  any number  of  
full ellipses chosen from ~S~',. - u . . ,  E m. There are only two possible arrangements  of  
these ellipses which satisfy the assumptions of the lemma: 

- None  of  the ellipses E ~ , . . . , E ~  is externally tangent to any other at ~. Then 
there exist three full ellipses, say E~,~;~,~;~, whose intersection is /~ (see 
fig. 2(a)); consequently, #(£") is smaller than the area of  the intersection of the 
full e l l ipses/~,  ~;~ and ~;~ (see fig. 2(b)). 

Indeed, let l l , . . . ,  lm be lines tangent to the ellipses E ~ , . . . ,  E~,  respectively, 
at the point/~. It may happen that, for some indices i,j, 1 <~ i , j  <<. m, i ~ j ,  the lines 
li and/ j  coincide, i.e. the ellipses E~ and E~ are tangent (although not  externally 
tangent) to each other at/~. Denote  by /31 , . . . ,  LM, for a suitable M,  M ~<m, the 
largest collection of these lines from l l , . . . ,  lm all of which differ from each other. 
If, for any I,  1 ~< I ~< M, there is more than one line from ll , .  • •, l,,,, which coin- 
cides with LI, then the respective ellipses must  be tangent to each other at/~. 
Since they cannot  be externally tangent, all of them must lie in the same closed 
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a b 

Fig. 2. 

half-plane ~PI defined by the line 2OI• Hence, if/~}, 0 < e <  1 °, denotes the set of 
all pointsp from ~PI such that the angle between the line 2ox, and the line connect- 
ing/~ and p is smaller than e, then the set/~} [13] is contained in each of the full 
ellipses tangent to 2OI at fi, in a sufficiently small neighborhood of ft. Therefore, 
for any e, 0 < e <  1 °, the intersection of all full ellipses E 1 . . . ,  E m contains the 
intersection of all sets F--~/, . . . , /~,  in a sufficiently small neighborhood of~.  
Moreover, the point/~ belongs to the latter intersection because it belongs to 
each of the se t s / ' } , . . . ,  F ~  and, at the same time,/~ is the single common point of 
all full ellipses E~ , . . . ,  E~; hence,/~ must be the intersection of F } , . . . , / ~ ,  for 
every e, 0 < e < 1 °. Denote by ~I g the intersection of the half-planes ~P1, ~P2, • • •, ~PI, 
for 3 ~< I ~ M .  For any such I ,  since all the lines 2Ol,..., 2OM are different from 
each other, the set ~j)I is either the single pointfi, or a closed set bounded by two of 
the lines L1 , 2o2 , . . . ,  2oI, i.e. ~ is the intersection of only two of the half-planes 
~P1, ~P2,. •-, ~PI. Assume that ~pM is not a single point, i.e. it is of the second type. 
Then, for a sufficiently small e > 0, the intersection of the sets _ P ~ , . . . , / ~  would 
be larger than the single point/~ in any neighborhood of this point. This contra- 
diction shows that :pM must consist of the single point ~ only. We can define the 
smallest integer K, 3 <<. K <. M ,  such that ~pK is a single point, and fl~/~-I is the inter- 
section of two half-planes, say, :PI and ~Pj. In other words, the intersection of 
~J)I, ~PJ, and :PK is the single point/~. Let E~, E~ and E~ be the ellipses tangent to 
the lines 2oz, 2oJ, and 2o~, respectively• All of the full ellipses E l ,  E~, E k contain 
the point ~, and are obviously contained in the respective half-planes ~Pl, ~P~, and 
~Pr, whose intersection is the single point ~; therefore, the intersection of the 

• - o  - o  U 

E k is this single point. full elhpses E~, Ey, . . . . .  
o o . 

U There exist two ellipses, say E}', E~ among E~ , . . . ,  E m, which are externally tan- 
gent to each other at/~ (see fig. 3(a)). Then/z(g ~) is smaller than the area of the 
intersection of the full ellipses - ~ -"  E i andE) (see fig. 3(b)). 
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In the first arrangement, for every u which is sufficiently close to t~, the intersec- 
tion ofE~, Ey, E~ is either an empty set, or a single point, or an "ellipsoidal convex 
triangle" as shown in fig. 2(b). Lemma 3.4 and remark 4.1 imply that the distances 
between any two vertices of this "triangle" are smaller than c l l u  - II for a suitable 
constant c, and for any u sufficiently close to ~. Simple geometrical considera- 
tions, utilizing the facts that the curvature and the lengths of the large and small 
axes of the ellipses belonging to a C °o family are C ~ functions of u (see lemma 2.4 
and remark 2.2), lead to the conclusion that the area of the "triangle", i.e./z(gu), 
can be estimated by c l l u  - II 2, for another suitable constant c, and for any u which 
is sufficiently close to h. 

In the second arrangement, for every u which is sufficiently close to t], the inter- 
section o f / ~  and Ey is either an empty set, or a single point, or an "ellipsoidal con- 
vex lens" as shown in fig. 3(b). To estimate the area of this "lens", we consider 
two oppositely directed unit vectors vi and ~j, externally normal to the ellipses E~ 
and Ey at the point/~, respectively (see fig. 4). For every u, sufficiently close to ~, the 

/ 
a /-[ 

Fig. 4. 
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"lens" will be totally contained in the strip restricted by two lines li and/j, parallel 
to each other, perpendicular to both vectors vi and ,~j, and tangent to the ellipses E~ 

o 

and E~ at the points in which ~i and vj are externally normal to them, respectively. 
The coordinates of the respective tangency points Pi and pj are Coo functions of u, 
as follows from lemma 3.1; hence, the distance between the lines li and/j can be esti- 
mated by c l l u  - II for a suitable constant c, and for any u which is close enough 
to ~. Again, using lemma 2.4 and remark 2.2, simple geometrical calculations show 
that the area of the "lens", i.e./~(E~), is smaller than c l l u  - II 3/2 for another suita- 
ble constant c, and any u which is close enough to ~. 

Combining the two cases, we have the estimate c l l u  - [I 3/2 for iz(g~). 
In both the first and the second arrangements, the length of the boundary of 

E a' is of order II ~'ll 1/2, and the boundary of £" is contained in the set of all 
points on the plane distant from g ~' by less than cllu -  '11, for a suitable constant 

0 • 0 U 1~ I 
c and all u, u' sufficiently close to u. Hence, /~(£ + ~ ) must be of order 

II 11 /211 u -  '11. []  

LEMMA 4.2 

Let {/~' : u ~  U}, . . . ,  { / ~  : u~  U} be C °O families of full ellipses on the 
r]~-plane. Let g u denote the intersection of all ~;~, -"  . . . ,  E,, and assume that, for a 
given point ~ e U, g ~ has a non-empty interior. Assume that there exist an index 
k, 1 <~k<~rn,~ e~P, and an open neighborhood (9(~) of the point/~ on the plane :P, 
such that~ is the only common point of the sets £" and E~ in this neighborhood; i.e. 
the intersection of the sets g", E~ and o(fi) is the single point/~. 

In addition, if for some i, 1 ~i<~m,i ¢ k, the ellipse E~ is tangent to E~ at/~, 
then we assume that the curvature of E u is larger than the curvature of E~ at this 
point (this assumption, together with lemma 3.3, excludes tangencies other than 
those of the internal or external type; the latter, however, is automatically excluded 
by the above assumption that the set g ~ has a non-empty interior, so the only accep- 
table type of tangency under these conditions is the internal one). 

Let :R ~ denote the intersection of the sets g u, ~P - E~, and (9(~), i.e. the common 
part of the sets E" and ~P - - ~ . o E~, included in the neighborhood (9 (~) of the pomtp. 

The above assumptions imply that there exists a constant c > 0 such that 
(i) c l l u  - II 3/2 for all u sufficiently close to 

° l  O !  • 0 

(ii) #(9~ ~ + :R" )  <cll ' -  llX/211u -  '11 for all u, u sufficiently close to u. 

Proof 
Obviously, the number #(9~") is smaller than the area bounded by any number 

U u U of ellipses chosen from E~, . . . ,  E~_I, Ek+l, . . . ,  E m, and contained inside both 
~P - E~ and 0(~). As in the case of lemma 4.1, there are only two possible arrange- 
ments of these ellipses which satisfy the assumptions of this lemma: 

• ~ ~ a E~ is tangent to E~ at/~. Then there - None of the elhpses E l , . . .  ' Ek_l, Ek+~,.. .  , o 
exist two ellipses among them, say E7 and E~, not tangent to each other at p, 
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Fig. 5. 

and such that/~ is the only common point of E~, E~ and E~ in the neighborhood 
0 ~ )  (see fig. 5(a)). Consequently, #(:R") is smaller than the area bounded by 
ET, Ey and contained in both :2 - ~;~ and 0 ~ )  (see fig. 5(b)). 

- There exists an ellipse, E~, among E~ , . . . ,  Ek_l, E k + l , . . .  , Era, internally tan- 
gent to E~ (see fig. 6(a)). Then #(2") is smaller than the area bounded by E~ and 
contained in both ~P - E~ and (9~) (see fig. 6(b)). 

In the first case, the proof is practically the same as the analogous part of the 
proof oflemma 4.1. 

In the second case, we use the additional assumption about the curvatures of 
internally tangent ellipses. This additional assumption assures that the area 

O restricted by the ellipse E~' and contained in both ~P - E~ and (9(~), has the shape of 

 cAJ 

o b 

Fig. 6. 
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a "lens", convex on one side, and concave on the other one, with the larger curva- 
ture of the ellipse on the convex side (E}'), as shown in fig. 7. The rest of the proof 
follows the corresponding part of the proof oflemma 4.1. [] 

5. Project ions o f  circles o f  intersection 

DEFINITION 5.1 
Let O1, 02 and O be three different spheres in R 3, O1 and 02 not tangent (exter- 

nally or internally) to O, and el,  e2 be the circles of intersection of the spheres O 
with O1 and 02, respectively. The circles el and e2 are said to be spherically tangent 
on the sphere O, if there exists only one common point of the circles el and e2. In 
this case there exists a common line l, tangent to both circles at this point. This line 
is called the common line oftangency of the circles el and e2. 

LEMMA 5.1 
Let el,  C2 be the circles of intersection of a sphere O with spheres O1 and O2, 

respectively (O1, 02 not being tangent to 0) ,  and let el ¢ e2. Assume that c is a 
common point of el and e2, and ll, 12 are lines tangent to el,  C2 at the point c, respec- 
tively. Denote by ~P a plane not perpendicular to any of the planes defined by the 
circles el and e2, not parallel to any of the lines ll and 12, not intersecting the sphere 
O, and such that the point c lies between ~P and the plane parallel to (P through the 
center of the sphere. Let 7r be the orthogonal projection o f R  3 onto ~P. 
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If ellipses El ,  E2, being images of the circles C1, ~2, respectively, on the plane ~P, 
under the projection zr, are tangent to each other at the point e = 7r(c), then: 

- El and E2 are either externally tangent at e, 

or 

- El is internally tangent to E2 at e, and the curvature of E1 is larger than the 
curvature of E2 at e, 

or 

- E2 is internally tangent to El at e, and the curvature of E2 is larger than the 
curvature of El at e. 

Proof 
Indeed, if E1 and E2 are tangent at the point e, then the line tangent to both E1 

and E2 at e is an image under 7r of both lines ll, 12, tangent to el and C2, respectively, 
at the point  c. Since the point c does not lie on the large circle of the sphere O paral- 
lel to (P, the lines ll and/2 coincide, and hence the circles el and e2 are spherically 
tangent on the sphere O at the point c. Consequently, the ellipses E1 and E2 are 
externally tangent, or one of them is internally tangent to the other one at the point  
e, say, E 1 is internally tangent to E2. 

Define the plane ~P' containing the circle e2, and denote by C the projection of  
the space R 3 onto ~P' along the same lines as the projection ~r, i.e. along a line perpen- 
dicular to ~P. The image of the circle e2 under C is obviously the same circle, and 
the image of  C1 under C is an ellipse E~ on the plane ~ ,  internally tangent to e2 at 
the point e' = C(c) = c. Hence, the curvature of E~l at e t cannot be smaller than the 
curvature of the circle C2 which is of course the same at all points belonging to e2. 
If these two curvatures were equal, the point e' would be the point of intersection of  
the ellipse E'I and its minor  axis, because the curvature of E~ at points neighbour- 
ing e ~ cannot  be smaller than the constant curvature of  the circle e2; consequently, 
this minor  axis would be an axis of symmetry of both the circle e2 and the ellipse Erl, 
and the direction of the projection C (which is the same as the direction of the pro- 
jection lr) would be perpendicular to the line/2, and hence 12 would be parallel to 
(P. This is excluded by one of the assumptions of the lemma. Hence, the curvature of 
the ellipse E~ must  be larger than the curvature of the circle e2 at the point e'. Since 
El1 and ~2 lie in the same plane, and 7r(E'l) = El,  7r(e2) = E2, 7r(e') = e, the same 
property must hold for the curvatures of E1 and E2 at the point e. [] 

6 .  M a i n  r e s u l t s  

The total surface area, i.e. the sum of those parts of the surface areas of  all the 
spheres 01 (ul, R1),. . . ,  On(un, Rn) which are not contained in any of the domains 
bounded by other spheres of the system, is a function S(u) of the 3n-dimensional 
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variable u. Here, the function S(u) relates to the entire geometrical boundary of 
the molecule including those parts of the surface which are buried inside the 
molecule. By So(u), we will denote the area of that fraction of the surface which 
is not buried inside the molecule [16]. It is obvious that S is a continuous function, 
and that So is not. The following theorems, together with concluding remarks 
in this section, describe all the situations in which the gradients of S and So are 
discontinuous. 

THEOREM 6.1 
Let O1 (Ul, R1), . . . ,  On(un, Rn) be a collection of n spheres in R 3, with variable 

coordinates of the centers u l , . . . ,  u,, and fixed radii R1 , . . . ,  Rn. If, for some ~ E R an, 
the spheres O1 (~1, R1), • • •, On (~,, Rn) satisfy the following conditions: 
(a) no two spheres are identical, 

(b) dist(~i, ~j) ¢ Ri + R:foralli , j  = 1 ,2 , . . .  ,n,i ¢ j ,  
O O O 

(c) Oi(~i, Ri) C'l Oj(uj, Rj) ¢ Oi(ui, Ri ) N Ok(Uk, Rk ) for all i , j ,k = 1 ,2 , . . .  ,n,i C-j, 
i 7 ~ k , j  7 ~ k, such that Oi(~i, Ri) N 0:@, R:) and Oi(~i, Ri) A Ok(~k, Rk) are not 
empty, then the gradient of the function S is continuous at h. 

Proof 
We will first prove this theorem when assumption (b) is replaced by a stronger 

condition: 

(b') dist(~i, ~j) ¢ [Ri 4- Rjl for all i,j = 1,2, . . . ,  n, i 7~j. 
O O 

For simplicity, denote by Oi and O i the spheres Oi(ui, Ri) and Oi(ui, Ri), for 
i = 1 ,2 , . . . ,  n, respectively. 

For all i = 1 ,2 , . . . ,  n, and for any u e R 3n, denote by Di that part of the surface 
of the sphere O;, which is not contained in the open balls bounded by the other 
spheres of the system. Obviously, the set D; may be empty for some indices i, and it 
is closed for i = 1 ,2 , . . .  ,n, i.e. Di = [)i [13]. Divide each of the spheres Oi into 8 
pieces O~, . . . ,  O~ by splitting it along three large circles parallel to the planes 
xy, xz, yz. We may assume here that none of these three circles coincides with any of 
the circles of intersection of the system; otherwise, we would properly rotate the 
coordi_9_nate system xyz. Denote by ©~, . . . ,  :D~ the intersections of the set Di and the 
sets O~, . . . ,  O~, respectively. We can represent the function S by the sum 
~7=1 }--]8m=1 S~, where S~ is the area of the surface ©m. The gradient of S can be 
represented as an analogous sum and, consequently, to prove the continuity of grad 
S, it is sufficient to prove this property for the functions S~, for each choice of the 
indices i and m. Let i and m be any fixed indices such that 1 ~< i ~< n and 1 ~< m ~< 8 and, 
for simplicity, let O = Oi, A = O~i , and © = ©m = ©m. We may also assume with- 
out loss of generality that i = 1. 

For the specific case u = h, denote by z], ~,  and O the respective sets A, ©, and 
O. Let o denote either the center of the surface & or a point on zl, very close to the 
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center, such that the plane ~P tangent to /~ at o is not parallel or perpendicular to 
any of the planes defined by the circles of intersection which appear in the system, 

O 

when u = ~, i.e. the circles related to the spheres O1, . . . ,  On; furthermore, if there 
exist two circles of intersection related to these spheres, spherically tangent to each 
other on the sphere O, and the point of tangency lies on the surface A, then the 
plane ~P is not parallel to the common line of tangency of these two circles. 
Obviously, such a point o exists because there is only a finite number of circles of 

O 

intersection for u = ~; moreover, if the center of the surface A can not be accepted 
as o because of the above conditions, the point o can be chosen as close to this center 
as we wish. 

O 

There exists a number e > 0 such that the open neighborhood [13] A, of the set 
O • • 

z~ on the sphere O, consisting of all points belonging to Owhose distance from A is 
less than e, satisfies the following condition: the plane ~P is not orthogonal to any 
plane tangent to O at any point belonging to z~,. IfTr is the orthogonal projection of 
A, on the plane ~P then, obviously, the images under 7r of any two different points 
from A, are different points on the plane :P. The image 7r(A) of A has the shape of a 
convex, slightly distorted (if o is not the center of A) "regular elliptic triangle". 
The image 7r(~D) of © is a subset of 7r(z~), for any u E R 3n. For u sufficiently close to 
~, the set 7r(©) is an area with a boundary consisting of arcs of several non-degener- 
ate ellipses, different from each other, i.e. 

- there are no straight lines bounding 7r(©); this follows from the above condi- 
tions for the choice of the point o, 

- none of the ellipses is reduced to a single point; such an ellipse would have to be 
the image under 7r of a circle of intersection which is a single point, and this situa- 
tion is excluded by assumption (b'), 

- the ellipses are distinct from each other; this follows from assumptions (a) 
and (c). 

If the plane ~P is supplied with a Cartesian coordinate system 7/~ (chosen so that 
the axis 77 is not parallel or perpendicular to any of the lines of intersection of the 
plane ~P with the planes defined by the circles of intersection which appear in the 
system for u = ~), then the surface area of D equals f~ ~) h(71, ~) dr/dG where 
h0?,( ) = [1 + ~(rT,~)o+ g~(~,~)]l/2. Here g(rT,~) = (R 2 - ~ f -  ~2)1Y2, R being the 
radius of the sphere O, and gn, g¢ denote the respective partial derivatives ofg. The 
function h is a positive, C °o function of??, ~ in thesubset 7r(A) of the plane T. 

If, for any index j ,  2 <<.j<~n, a part of the set A is contained inside the sphere Oj, 
or lies on the surface of Oj, denote this part by Cj. Cj is a closed set, and so is the set 

ACj = ~ - Cj. The image of one of the sets Cj or  ACj on the plane T is convex. 

For all other indices j ,  2 ~<j ~n,  Cj = 0 and ACj = A. 
If/z denotes the measure [15] of surface area on the sphere O then, for u = ~, the 

surface area of ~ equals 
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n n n 

~(7) )  = , u ( A )  - ~ + ~(C,. n - ~(CinCjnCk)+... 
i=2 i,j=2 i,j, k=2 

(_1),/~(~2 o .. o - n G n . n c , ) ,  (20) 
where the indiceSo o i , j ,  k , ; . .  in the multiple sums are all distinct from each other, 
and the setsC2, C3~...,  C, are the respective sets Ca, Ca , . . . ,  C,, for u = ~. By repla- 
cing C i by A - A C  i wherever the image under or of C i is not  convex, this equation 
is t ransformed into a linear combination of  areas of sets which are closed sets with 
convex images. Each of  these convex images is obviously a convex set bounded by 
arcs of several non-degenerate ellipses, distinct from each other. It may happen,  
however, that  such a set takes the form of a single point  (e.g. when two of the circles 
of  intersection, whose images under or are the respective ellipses, are spherically tan- 
gent on 9).  The final equation for the surface area of I/:) must  contain also those 
terms which represent the surface areas of all non-empty sets (including single 
points), even if the surface areas equal zero. 

o 

Thus, the area of~D is a linear combination of integrals of the function h over con- 
vex sets bounded by arcs of distinct, non-degenerate ellipses on the plane ~P. 

To prove the continuity of the gradient of the function S at the point  ~, we must  
examine the values of  the function S (i.e. the related surface areas) for points u 
which are close but distinct from ~. Since ul,  u 2 , . . . ,  Un denote the coordinates of  the 
centers of spheres, it is sufficient to change only the variables ua, u3, • • •, un because 
the change of Ul can be compensated by a translation of the whole system. Any suf- 
ficiently small change of  the variables u a , u 3 , . . .  , u ,  maintains the conditions 
imposed on the choice of  the coordinate system x y z ,  and the plane (P with the coor- 
dinate system r/(, as well as the assumptions (a), (b'), and (c) of the theorem. 
Hence, for u sufficiently close to ~, the final form of  the equation for the area of I/3 
remains valid, and is the same linear combination of  integrals of  the function h over 
convex sets bounded by arcs of  ellipses on the plane. Each of  these ellioPSeS corre- 
sponds to an ellipse that appears in the equation for the surface area of  ~D calculated 
for the coordinates t~. Both are simply projections under or of the same circle of  inter- 
section of  the sphere Owith one of the spheres Oa, O3, • • •, O,, which moves slightly 
in R 3 with a small change of ua, u3 , . . . ,  u,. Direct application of lemma 2.4 and 
remark 2.2 shows that both ellipses are members of the same C °O family of  ellipses 
on the plane ~P. 

Consider only one term of the final linear combination of integrals of  the func- 
tion h. For  any u close enough to ~, the set g" over which we integrate is a convex set 
bounded by arcs of  several ellipses, say E~, E ~ , . . . ,  E~,, which belong to respective 
Coo families of ellipses, such that 

- none of  the ellipses E~ , . . .  ,Earn is degenerate, i.e, both axes of  each of  these 
ellipses have lengths greater than zero, 

- E~ # E ~ f o r a n y i , j  = 1 , 2 , . . . , m , i  # j .  
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The set ~'~ may take the form of a convex set with a non-empty interior, or the 
form of a single point; E ~ cannot be an empty set because integrals over empty sets 
are not included in the final linear combination of integrals. We emphasize here 
that all the integrals of h over sets consisting of single points must be considered, 
although their contributions to the area of 23 are zero. Such integrals can take posi- 
tive values, when t] is replaced by u; a change of u causes "movements" of ellipses 
belonging to C °o families and a single-point set E ~ can expand to a set with a non- 
empty interior, resulting in a positive value of the respective integral. 

To prove the continuity of the gradient of S, we must consider the limits of 
o I o/ • IS(u) - - u II, w h e r e  Ilu - ~' II converges to zero and u is close or equal to 

~; however, because of the method of linear decomposition of S, shown above, it 
is only necessary to examine the limit 

lim [St(u) - - II (21) 

whereSa(u) = f re= h(r/,~) dr/d~. 
If E u is a single point, E u must be an intersection of full ellipses E ~ , . . . ,  ~:~m; more- 

over, the absolute value of the limit in expression (21) is smaller than 

lim 1 / f ~  Ilu - II h(r/, ~) dr /d( .  (22 )  

Since the families {~7]' : u e U } , . . . ,  {~u : u e U}, and the intersection £= satisfy 
the assumptions of lemma 4.1, for a sufficiently small neighborhood U of h, then 

o  ')<cll  '- llXnllu- ~' II, and the limit in expression (22) is of order 
II u' - u 111/2. Hence, the limit in expression (21) equals zero for ~' = t], and is a con- 

. o o 

tinuous functmn ofu '  at u. 
If ~ is a convex set with a non-empty interior, the function S t ( u )  can be repre- 

sented, for every u which is close enough to ~, by 

[2~  [,(u,¢) 
S t  (u) = h(r  cos ¢, r sin ¢)r dr de 

JO JO 

"~0 2~ = H ( p ( u ,  ¢), ¢) de ,  (23) 

where the function p(u, ¢) is the distance from a pre-fixed point in the interior of 
E ~, to the border ofE ~, and in the direction indicated by the angle ¢ relative to the 7/- 
axis of the coordinate system on the plane T. H ( r ,  ¢) is the primitive [17] of the func- 
tion under the double integral sign over the variable r; it is a Coo function of both 
variables r and ¢, with H(0, ¢) equal to zero for all ¢. 

Let us first assume that each of the vertices ~L,. . . ,  qt on the boundary of the set 
~ belongs to only two of the ellipses E ~ , . . . ,  E u. Moreover, assume that none of 
the arcs comprising the boundary of ~ is tangent to any of the ellipses E ~ , . . . ,  E~. 
In this case the number of vertices remains the same for all u sufficiently close to 
~, and lemma 3.4 implies that their positions are Coo functions of u. This fact, 
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together with lemma 3.2, implies that the function Se is a C °o function at ~. In this 
case, we do not even need to consider the difference quotient in expression (21). 

If, on the contrary, there exists a vertex on the boundary of E u belonging to 
more than two ellipses, or if there is an arc of boundary of E u that is tangent to one 
of the ellipses, then more vertices can appear on the boundary of E" even for very 
small changes of u. In the first case, there exist two ellipses, say, E~, E~, having this 
vertex as a common point, but not tangent there to each other, and there exists a 
neighborhood of the vertex such that there are no common points of E~, ~?~, and E~ 
in this neighborhood, with the exception of this vertex, for all k = 1,2, . . . ,  m, 
k ~ i,j .  Then there exists a k, 1 <<.k<~m, k ~ i , j  such thatE~ contains the vertex. If, 
in addition, E~ is tangent to one of the ellipses E~ or Ey, say, E~', then lemma 5.1 
and the assumptions made about the choice of the point o and the plane ~P imply 
that E~ is internally tangent to E~ at the vertex, and the curvature of E~ is larger 
than the curvature of E~ there. 

In the second case, there exists an ellipse E~ bordering E '~, and an ellipse E~, 
such that E~ is internally tangent to E~ at a point on the boundary of E u, which is 
not a vertex of E~; the curvature of E~ is larger than the curvature of E~ at this 
point. 

All these situations are shown in fig. 8, and are covered by lemma 4.2. 
The value of Se (u) can be now computed exactly as in the previous case (i.e. we 

would ignore the appearance of extra vertices), if we add (or subtract) some com- 
pensating terms being integrals of the function h, over sets which have shapes fully 
described in lemma 4.2, and denoted there bYo~U The areas of these sets are of 

- - U  O! order Ilu - ~ II 3/2, and the area of the sets 5~ u - ~R u are of order II II 1/211u - u II; 
hence, the respective integrals give zero contributions in the limit in expression 

Oi O 
(21), and this limit represents a continuous function ofu at u. 

This completes the proof of the theorem, with the stronger assumption (b') repla- 
cing the original assumption (b). However, if two spheres are internally tangent, 
simple geometrical calculations show that the gradient of the accessible surface 
area is continuous. [] 

Fig. 8. 
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REMARK 6.1 

The gradient of S is discontinuous if assumptions (a), (b), or (c) of theorem 6.1 
are not satisfied, unless 

- in the case (a), both spheres, 

- in the case (b), the point of tangency, 

- in the case (c), the common circle of intersection 

are contained in the open balls defined by all the spheres of the system. 

P r o o f  
It is well-known that the gradient is discontinuous in cases (a) and (b), and then 

the proof of this fact is trivial. 
In case (c), if spheres O1,02, and 03 have a circle of intersection which is com- 

mon for all the pairs O102, 0203, and O103 (see fig. 9), then one of the spheres, 
say, 03, must be contained in the union of the remaining two, say O1 U 02. Let O be 
the plane of the circle of intersection. The radius of the sphere 03 is larger than or 
equal to the radius of the circle of intersection. In the first case, the center u3 of 03 
does not lie in the plane O, and in the second case, it does. In the first case, if the 
center of 03 is moved orthogonally towards O while the centers of O1 and 02 are 
preserved, the combined surface area of O1, 02, and 03 decreases, and the first deri- 
vative in the component of the coordinates u3 orthogonal to O would be more nega- 
tive than a negative constant; the value of this constant follows from the 
geometrical relations between the radii and the centers of the three spheres in their 
original positions, and is related to the ratio between the "gained" area of the 
sphere 03, and the "lost" area of the combined spheres O1 and 02, and to the length 
of the accessible portion of the common circle of intersection. If the center of 03 is 
moved in the opposite direction, there is no change in the combined surface areas 

Fig. 9. 
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of the three spheres, and the first derivative would be zero; thus, the gradient is dis- 
continuous. 

In the second case, opposite movements of the center u3 parallel to O, may be 
considered to show the discontinuity of the gradient. 

THEOREM 6.2 

Theorem 6.1 remains valid for the function So, unless the point ~ is a point of dis- 
continuity of $0. 

Proof 
Let ~ satisfy the assumptions of this theorem. The area S0(~) is a linear combina- 

tion of integrals of the function h over convex sets bounded by arcs of distinct, 
non-degenerate ellipses on a plane, as in theorem 6.1. The only difference is that, 
for the point t3, all the integrals which appear in the linear combination for the func- 
tion S, and account for those parts of the surface, that are buried inside the mole- 
cule, are removed for the calculation of So. Each of these integrals represents a 
continuous function of u, with continuous first derivatives at the point t3. Thus, the 
function So is discontinuous at t3, if and only if an infinitesimally small change of 
the variable u from its original position at ~, will change the number of integrals 
with positive values, in the linear combination of integrals for So; this is associated 
with the situation in which a surface, buried inside the molecule for u = ~, becomes 
accessible from the outside of the molecule, for u infinitesimally close to t}. [] 

REMARK 6.2 

Remark 6.1 remains valid for the function So, unless the point ~ is a point of dis- 
continuity of So, and then the gradient cannot be defined at this point. 

7. Conclusion 

The situations described in theorems 6.1 and 6.2, in which the gradient of the 
accessible surface area is discontinuous, can occur during any local energy minimi- 
zation or molecular dynamics simulation of a macromolecule. External contact of 
two atomic spheres occurs quite frequently during simulations in which a macro- 
molecule is allowed to fold or unfold ([9], and our unpublished observations). The 
second type of discontinuity, in which two circles of intersection overlap, has been 
observed in simulations in which linear hydrogen bonds were forming (our unpub- 
lished observations). Techniques for avoiding the effects of such discontinuities 
will be discussed elsewhere. 
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